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Abstract

Soliton automata are a type of molecular computers based on the

predictable motions of standing energy waves, or solitons, propagating

through a polymer molecule. Solitons are induced into the system and

change the underlying covalent bond parities of the molecule as they

move through it. Soliton automata have been proven to be computa-

tionally equivalent to the set of automata. While the behavior of a

single soliton in a system is well-researched, the case of multiple soli-

tons in a single system is not well-examined. In this work, we indicate

some conclusions drawn from the definition of the model, notably the

nature of determinism in such a model.
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1 Introduction

A soliton, or solitary wave, is a type of particle that passes through polymer
chains that alter the underlying electron bond structure. These modifica-
tions can be considered as state changes in an automaton, working as an
unconventional computer. We can model the molecular chain as a graph
and describe the effect of solitons passing through it as a soliton automaton.
Soliton automata were first examined by Dassow and Jürgensen in 1986 [2],
where each atom in a molecule is considered a graph node, and where each
bond is a graph edge. Each edge of the soliton graph has a weight designat-
ing a single or double bond. The soliton traverses the graph along edges of
alternating weight; upon traversing an edge, the edge’s weight is inverted.
The propagation of solitons has been proven to be physically well-defined
[6, 8].

Until recently, much of the work on soliton automata has focused on
cases with only one soliton existing in an automaton at a time [2, 3, 4, 5, 7].
The multi-wave soliton automata model was initially examined by Bordihn,
Jürgensen and Ritter in 2016 [1], but the paper left many open questions.
In that model, a burst is defined as a sequence of (possibly delayed) soliton
automata injections. In creating a parallel model of computation, questions
arise regarding changes of the transition monoid of the soliton automata:
Are the transformations induced by a burst potentially identities? Are they
involutible? What variability can be permitted in the timing and position-
ing of bursts to achieve the same behavior in automata? Are there any
impossible-to-traverse paths in a soliton graph? Is the nature of determin-
ism in automata the same as in the single-soliton case? We intend to answer
some of these questions in this thesis.
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2 Preliminaries

2.1 Soliton Graphs

A graph is a pair G = (N,E) with N the set of nodes and E ⊆ N × N the
set of edges. A weighted graph is defined as the triple G = (N,E,w) where
(N,E) is a graph and w(E) is the weight function mapping edges to integers.
For a node n ∈ N , its vicinity is denoted by V (n) = {n′|(n, n′) ∈ E}, and
its degree is denoted by d(n) = |V (n)|.

A node is said to be exterior if d(n) = 1, and interior if d(n) > 1. A
node is isolated if d(n) = 0.

A soliton graph [2] is a weighted graph G = (N,E,w) such that:

1. (n, n) /∈ E for all n ∈ N ;

2. Every component of G has at least one exterior node;

3. 1 ≤ d(n) ≤ 3 for all n ∈ N ;

4. If n is an exterior node, w(n, n′) ∈ {1, 2} for any node n′ in the vicinity
of n; and

5. For any node n ∈ N , if d(n) ∈ {2, 3}, then
∑

n′∈V (n)w(n, n′) = d(n) + 1.

From item 5, it follows that if d(n) = 2, then the two edges e1, e2 ∈ E con-
nected to it have (w(e1), w(e2)) ∈ {(1, 2), (2, 1)}; and that if d(n) = 3, then
the three edges e1, e2, e3 ∈ E connected to it are such that (w(e1), w(e2), w(e3)) ∈
{(1, 1, 2), (1, 2, 1), (2, 1, 1)}.

A soliton switch is defined as a node n of degree d(n) = 3 (Fig. 1). This
is also referred to in this work as a “non-deterministic branch” when a soliton
is incoming along the weight-2 edge.

1 a

2

3

Figure 1: A soliton switch.
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A (partial) soliton path of G is a sequence n0, n1, ..., nk for all ni ∈ N and
0 ≤ i ≤ k with k > 0 if:

1. n0 is an exterior node;

2. n1, ..., nk−1 for k > 1 are interior nodes;

3. ni and ni+1 share an edge; and

4. There exists a sequence of weighted graphs G0, G1, ..., Gk such that:

(a) G0 = G;

(b) For any i = {0, 1, ..., k − 2}, Gi+1 is defined if and only if Gi =
(N,E,w) is defined, and |wi(ni, ni+1) − wi(ni+1, ni+2)| = 1; that is,
the edge weights along the path differ by one; and

(c) Gk is defined if and only if Gk−1 is defined.

For the resultant graphs Gi and some n, n′ ∈ N with (n, n′) ∈ E,
wi(n, n

′) = wi−1(n, n
′) only if (n, n′) 6= (ni−1, ni). Otherwise, wi(n, n

′) =
3− wi−1(n, n

′).
In other words, a path begins at an exterior node and consists of nodes

linked by edges with weights differing by 1. As the soliton propagates along
the path, each edge e ∈ E it traverses changes its weight to 3 − w(e). In
addition, a soliton may only traverse along a path of alternating weights.

The set S(G) is defined as all possible Gk for some G.
A soliton path is total if nk is an exterior node. The set S(G, n, n′) is the

set of all possible weighted graphs Gk resulting from total soliton paths from
n to n′.

A soliton graph G is a chestnut if it consists of a single cycle of even
length, with paths leading into it that have an even length, and even spacings
between the path entry points [2].

1 a b

c

d

e

Figure 2: A chestnut.
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2.2 Soliton Automata

An alphabet Σ is a non-empty set of symbols. A word or string is a finite
sequence of symbols in an alphabet. A semi-automaton is a triple A =
(Q,Σ, τ), where Q is a non-empty set, Σ is the input alphabet, and τ :
Q × Σ → 2Q is a map. The elements of Q are called states. τ is called
the transition function of A. All automata we will consider in this work are
semi-automata, and so we drop the “semi-” prefix.

If G is a soliton graph, and X ∈ N is the set of exterior nodes of G, then
the soliton automaton based on G is defined as A(G) = (S(G), X × X, δ),
where S(G) is the set of states, X ×X is the input alphabet, and δ : S(G)×
X × X → 2S(G) is the transition function. We have that δ(G′, n, n′) =
S(G′, n, n′) if S(G′, n, n′) 6= ∅; otherwise, δ(G′, n, n′) = {G′}.

We say that A(G) is deterministic if |δ(G′, n, n′)| ≤ 1 for all G′ ∈ S(G)
and all exterior nodes n, n′ ∈ N . It is strongly deterministic if there is exactly
one soliton path from n to n′ in G′, for all G′ ∈ S(G) and exterior nodes
n, n′ ∈ N . It is weakly deterministic if it is deterministic but not strongly
deterministic. For an example of weak determinism, see Appendix A.4.

Given a soliton automaton A(G), G is a chestnut if and only if A is
strongly deterministic in the single-soliton case [2].

2.3 Weighted Vectors

In order to arithmetize some examples, we introduce the concept of a weighted
vector for a graph G = (N,E,w). A weighted vector (a − b) denotes the
weighted edge between nodes a, b ∈ N with (a, b) ∈ E having weight 1,
and a weighted vector (a = b) denotes the same edge having weight 2. The
complement of a weighted edge is formed by an edge of weight i undergoing
a transformation to weight 3 − i. In this vector, a is called the start-node,
and b is called the end-node.

A walk in G is defined as a finite sequence of weighted vectors such that
consecutive vectors v1 and v2 share exactly one node. Then the end-node
of v1 is the start-node of v2. The first vector in a walk is a walk-start and
the last vector is a walk-end. A weighted walk is a walk in which vector
components are weighted edges of G.

A walk consisting of k nodes is denoted by W = (n1, n2, ..., nk). A
weighted walk is denoted by Ŵ = (n1o1n2o2...ok−1nk), where oi ∈ {−,=}
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for 1 ≤ i < k. All vectors in a walk with the same start- and end-nodes
represent the same weighted edge in the soliton graph.

A soliton is a positional operator on a weighted walk. It enters the walk on
the walk-start’s start-node of the weighted walk, and acts by performing the
complement operation on its vector and proceeding to the following vector in
the walk. It continues until it has traversed the entire walk. If the walk-end’s
end-node is an exterior node, the walk is considered total, and the soliton
exits upon complementing the walk-end. A soliton’s position in a walk is
indicated by • or ◦.

For some walk W, we can define the formal polynomial W(x) as follows:
a term xab represents a vector (a, b) ∈ W , and the formal sum of all terms
in a walk is the edge polynomial W(x). We take ⊕ to be a commutative,
associative, modulo-2 addition operation, with additive identity 0, as the
formal sum operator. In addition, the factors in the exponent commute, i.e.
xab = xba.

For example, a walk W = (1, a, b, c, a, 1) has the edge polynomial W(x) =
x1a ⊕ xab ⊕ xbc ⊕ xca ⊕ xa1. Taking exponents to be commutative, we can
indicate edges are undirected vectors. From the definition of ⊕, W(x) in its
simplest form indicates edges that occur an odd number of times in a walk.
In the above example, W = (1, a, b, c, a, 1), the simplest form of the edge
polynomial is W(x) = xab⊕xbc⊕xca, and we see that the edges (a, b), (b, c),
and (c, a) are traversed an odd number of times. In addition, W(x) = 0 if
and only if all edges are traversed an even number of times; i.e., the walk is
an identity transformation on the soliton automaton.

A subwalk is a partial walk W′ defined on a subsequence of consecutive
nodes of the node sequence of W. Subwalks inherit the arithmetic properties
of terms.

A weighted-edge polynomial Ŵ(x) represents a walk on a weighted graph
G = (N,E,w). Terms in Ŵ(x) are of the form xab and 2xab, where a, b ∈ N ,
{a, b} ∈ E, and w ∈ {1, 2}. xab corresponds to a vector (a − b) and 2xab

corresponds to a vector (a = b). The coefficient represents the weight of the
edge in the exponent of the term.

A complement C is an operation defined as C(kt) = (3 − k)t for a term
t and coefficient k.
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2.4 Bursts

A burst b of length m is a word of the form s1||k1s2||k2 ...sm−1||km−1sm⊥ with
the following properties:

1. m ∈ N;

2. s1, s2, ..., sm ∈ X, where X ⊆ N has the property that for any x ∈ X,
d(x) = 1; and

3. k1, k2, ..., km−1 ∈ N0.

Bursts are the input symbol to multi-wave soliton automata, and they
model the time sequence of soliton injections. The term ||k denotes a delay
of k, so it follows that the term si||k denotes that soliton si is injected at time
t+

∑i
j=1 kj. If a burst starts at time t, then soliton s1 is injected at time t,

soliton s2 is injected at time t+ k1, soliton s3 is injected at time t+ k1 + k2,
and so on. The duration of a burst is denoted by t(m) =

∑m−1
j=1 kj.

We illustrate automata in this paper via a physicochemical analogy. Weight-
one edges are illustrated with a single line, and weight-two edges are illus-
trated with a double line. Letters denote interior nodes and numbers denote
exterior nodes. The symbols •, ◦ and � indicate solitons.

1 a b c◦ d•

e
f

g

h

i

j
k

Figure 3: Two solitons in a soliton automaton. This automaton also happens

to be a chestnut.
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3 Identity

We will begin by examining the following question: can a multi-wave soliton
automata execute a burst that acts as the identity operation?

Theorem 3.1. Any even-length burst acts as the identity on a soliton graph

G = (N,E,w) with d(n) ≤ 2 for any n ∈ N , and any odd-length burst does

not.

Proof. Since for all n, d(n) ≤ 2, the graph takes the form of a straight line.

The weight polynomial for such a configuration, for any soliton, will be of

the form W(x) = x1s1 ⊕ xs1s2 ⊕ ... ⊕ xsk−1sk , with k = |N |. There are an

even number of solitons, so there are 2mW(x) traversals for some non-zero

m. 2W(x) = 0, so any even-length burst acts as the identity.

Note that this is not necessarily the case with a tree (N,E), with d(n) = 3
for some n ∈ N . Consider the following soliton graph:

1 a

2

3

Figure 4: A soliton tree.

If a soliton begins at node 2, it proceeds to and exits via node 3.

1 a

2

3

Figure 5: A soliton tree, after a first node.

If a second soliton is injected at node 2 after the first one in a burst, its
behavior is non-deterministic and may choose either branch, exiting at nodes
1 or 3. If it chooses node 1, the burst is not the identity.
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If a tree contains a node n with d(n) = 3, two of the three edges of
n are of weight 1. This follows from the condition that the sum of the
weights, on edges sharing a node, is equal to 4 for a node of degree 3 [2]. If a
soliton encounters this node from a weight-2 edge, it has a non-deterministic
choice (consider if a soliton were injected at node 3 in Figure 4). This non-
determinism removes the possibility of a deterministic burst configuration
that acts as the identity. As there are no impervious paths in the multi-wave
automata case 1, multiple solitons will at some point be able to encounter
this degree-3 soliton. Thus, the Theorem is not true if the graph contains a
node of degree 3.

Lemma 3.1. No chestnut with exactly one incoming path can have a burst

of two solitons moving in parallel act as the identity.

Proof. Let s1 denote the first soliton in the soliton graph and s2 denote the

second. Let n0, n1, . . . , nk be the total soliton path that each of the two

solitons travel (it is identical for both). Let t1 be the time the first soliton

enters the graph of the automaton, and t2 be the time the second soliton

enters the graph. We know that all paths in a chestnut’s cycle have an even

length. We take l to be the length of the incoming path, and c to be the

length of the cycle.

1 a b

c d

e

fg

Figure 6: A simple chestnut, with l = 2 and c = 6. This graph is similar to

the graphic of the chemical model of the Ethylbenzene molecule.

We first consider the case when t2 − t1 is odd.

Case 1 : t2 − t1 ≥ 2l + c

1This is proved later in Section 5.
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In this case, the solitons are not moving in parallel. This trivially does

not act as the identity in parallel.

Case 2 : l + c ≤ t2 − t1 < 2l + c

In this case, the first soliton has exited the cycle prior to the second one

entering it. This will result in two solitons attempting to cross the same

edge simultaneously, which is forbidden by the multi-wave soliton automata

model. Then these paths do not exist.

Case 3 : c ≤ t2 − t1 < l + c

In this case, s2 enters the graph when s1 is within the cycle. If l < c, s2

enters the cycle with s1 still in it, and the case reduces to Case 4. Otherwise,

the two solitons are directed towards each other on the incoming edge, and

Case 2 is produced.

Case 4 : t2 − t1 < c

In this case, the first soliton enters the cycle followed closely by the second

one. Both exist in the cycle simultaneously. The parity of the weight of the

first soliton’s first edge in the cycle will differ from that of the second’s: that

is, if s1 enters the cycle on an edge with w(E) = n, s2 will enter the cycle on

an edge with w(E) = 3−n, as s1 has inverted the weight on it. s1 will arrive

at a deterministic choice at the cycle (as this is a property of a chestnut

[2]), whereas s2 will be forced to follow it (anything otherwise would be a

forbidden transition). Note that s2 would have a non-deterministic choice if

the solitons were not entering a cycle.

For a worked example, refer to Appendix A.1.

The first soliton will not be able to exit the cycle on the first iteration,

as s2 will have inverted the incoming edge into the cycle. It continues on

the cycle. s2, following closely, will exit the cycle and return to the exterior

node. s1 will continue its loop and exit.
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The second soliton, s2, has a non-deterministic choice to make. If it exits,

the cycle is traversed three times - by s1 twice and by s2 once. As this is an

odd number, the chestnut’s cycle is inverted and thus in this case the soliton

graph is different. However, if s2 follows s1, we find there is no change to the

cycle (each soliton traverses it twice), and we have traversed the cycle a total

of four times. Regardless of the number of times the second soliton follows

the first, the final graph is the same. Eventually, the solitons exit and we

arrive at the first outcome (with s2 exiting). Thus, the cycle is traversed an

odd number of times, and the burst is not the identity.

We must consider the case when t2 − t1 is even. This follows mostly

the same as the odd case, except that two solitons may potentially proceed

towards each other, as two solitons may simultaneously occupy a node. If

the solitons progress in the same direction, we get the same result as the

odd case. However, if they choose alternate directions, they both occupy the

same node.

Before they occupy the same node, the edges they progress on will have

weights w and 3 − w. Upon occupying the node, the edges have weights

3−w and w, respectively. This presents a conflict, as the first node will have

entered on an edge with weight w. It cannot move backward and the only

other edge now has weight w, and so the path does not exist. Then this case

is not the identity.

As these cases comprehensively cover each possible timing, the proof is

complete.

Theorem 3.2. No burst acts as the identity for chestnuts with exactly one

incoming path.

Proof. We will now generalize the result of Lemma 3.1. We take l to be

the length of the incoming path, and c to be the length of the cycle. From

Lemma 3.1, we reuse the first three cases: we assume all three solitons are in

the automata simultaneously at some point, and that the burst’s duration is
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less than c, as otherwise the solitons will definitely collide attempting to enter

the cycle. The cases are similar to the length-2 burst above: the solitons will

collide on the incoming path, or all simultaneously exist within the cycle.

For an example, see Appendix A.2.

Consider Wp(x) = x1p1 ⊕ ...⊕xpk−1r1 to be the incoming walk, comprised

of l terms, and Wr(x) = xr1r2 ⊕ ...⊕ xrc−1r1 to be the cyclic walk, comprised

of c terms, for a burst b. Both walks are identical for each soliton, so we refer

to the shorthand Wp(x) = Wp, and Wr(x) = Wr. Assuming each soliton

does exit the cycle at some point, every soliton’s walk has 2Wp as a subwalk.

In the even |b| case, we find the first soliton will not exit and will con-

tribute 2Wr(x). The second soliton will have a non-deterministic choice. If it

does not leave, an even number of cycles occur (as there are an even number

of solitons in the cycle), so we discard the consideration of non-deterministic

solitons cycling in this case. A third soliton will follow the second, and a

fourth will have its own non-deterministic choice. Then the second soliton

contributes 1Wr(x) (as it immediately exits). The third contributes 1Wr(x)

as well. The fourth contributes 1Wr(x) when it immediately exits, and so

on. When the first soliton arrives back, it has contributed 2Wr(x), and exits.

Then the total walk sum is W = (2 + m)Wr + 2|b|Wp, where m = |b| − 1.

W 6= 0, as 2 +m = 2 + |b| − 1 is not even, so it is not the identity.

In the odd |b| case, the first soliton exits after one cycle, contributing 1Wr.

This is because Wp is traversed |b| times, an odd number, and so the leading

soliton will deterministically exit. The second soliton may proceed infinitely

cyclically, but as there are now an even number of solitons propagating, any

effect this weak determinism has is nullified by following solitons. When the

next soliton exits, it has contributed (1 + m)Wr times, and is followed by

the next soliton, itself having (1 +m)Wr cycles. This repeats for all solitons

remaining. Then the total sum of the walks is W = |b|Wp + (1 + j[(1 +

m1) + (1 + m2) + ...])Wr, where m1,m2, ...mj are the number of weakly-

deterministic cycles, and j is the (even) number of solitons that are not the
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first soliton. Because 1 + j[...] is odd, the burst is not the identity.

Because we have proved this for both even and odd burst lengths, any

valid soliton bursts on chestnuts with one entry path are not the identity.

For more complex soliton graphs, we simply need to prove there is some
path for which a burst does not act as the identity. The following proofs will
make use of this strategy.

Theorem 3.3. No burst from one external node acts as the identity for

chestnuts.

Proof. In the case where there are multiple external nodes in a chestnut,

the constraint on burst size is no longer sufficient. Solitons, in fact, may

not follow their leading soliton, as they may exit via another incoming path

before the solitons succeeding them reach the node they reside at. Some

solitons may not cross their entry path twice (if they are to exit to a different

external node).

We can generalize Theorem 3.2 for chestnuts with any number of incoming

paths, assuming the solitons in the burst do not conflict. If they do conflict,

the burst does not exist. Similarly to the single-incoming-path case, the first

soliton will perform one cycle traversal immediately.

Assume a burst s1||k1s2||k2 ...sm−1||km−1sm⊥ of length m ≥ 2. s2 has the

option to potentially exit at any of the switches that are on the cycle but

not connected to the entry path. If s2 exits at the first available switch, s1

completes its cycle and exits on the same path. If s3 exists, it follows s2. If

s4 exists, it now has a non-deterministic choice as well, and so on. Assume

all solitons except s1 in the burst non-deterministically exit on the first non-

entry branch. Then the segment of the cycle not visited by s2 through sm

will only have been visited once (by s1), and so the parity of the number of

traversals of this cycle segment will be odd. Thus, bursts are not the identity

on chestnuts with multiple exit paths.

In tandem with Theorem 3.2, no burst from one external node acts as the

identity for chestnuts.
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Theorem 3.4. No burst acts as the identity for soliton automata on a graph

composed of a cycle with exactly one incoming path.

Proof. These structures are chestnuts, but with the possibility of cycles of

an odd length. For even length cycles, Theorem 3.3 suffices. For odd-length

cycles, the only difference is that an odd-length cyclic walk implies there are

two similarly-weighted edges sharing a node in the cyclic walk.

1 a b

c
d

e
f

Figure 7: An odd-length cycle.

When a soliton encounters the incoming path, it will have a non-deterministic

choice available. We know this as if the cycle has odd length, it will have two

neighboring edges of identical weight. This segment would not be traversable

unless the node shared by the two edges has a third edge. Any further solitons

will follow it deterministically.

1 a b

c◦
d•

e
f

Figure 8: An odd-length cycle, with an even-length soliton burst performing

a traversal.

Consider a graph with incoming path length l and cycle length c. If the

burst length was even, the leading soliton exits after one traversal, and the

odd-length remainder exit with weak determinism (and therefore do not act

as the identity). If the burst length were odd, the leading soliton determinis-

tically continues around the cycle after its first iteration, and the second has
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a weakly deterministic choice to make. If the second soliton exits, there are

m cyclic path traversals, where m is the burst length |b| less one (an even

number). If the first soliton - with a weakly deterministic choice, finally -

does not exit, there are m + 2 + 1 cyclic path traversals in total, an odd

number.

We formalize this using weighted vectors. Consider Wp(x) = x1p1 ⊕
... ⊕ xpk−1r1 to be the incoming walk, comprised of l terms, and Wr(x) =

xr1r2 ⊕ ... ⊕ xrc−1r1 to be the cyclic walk, comprised of c terms, for a burst

b. We use the shorthand Wp(x) = Wp, and Wr(x) = Wr. Assuming each

soliton does exit the cycle at some point, every soliton’s walk has 2Wp as a

subwalk.

In the even-length burst case, the solitons contribute |b|Wr as they cycle

for the first time. The first soliton exits, contributing Wp deterministically.

The next solitons will then either non-deterministically exit, contributing

(|b| − 1)Wp, and causing the burst to act as the identity, or they will not

exit. If they do not exit, the total cyclic walk sum is |b|Wr + n(|b| − 1)Wr,

for some n iterations. Assume n is odd. Then |b|+n|b| −n = |b|+n(|b| − 1)

is an odd number, and so this burst does not act as the identity in general.

In the odd-length burst case, the solitons again contribute |b|Wr as they

cycle for the first time. However, the first soliton now deterministically cycles

again. Its total contribution is (2 + n)Wr, for some n ≥ 0. If the following

solitons exit non-deterministically, it then exits deterministically, and the

total cyclic walk sum is 2Wr + (|b| − 1)Wr = (1 + |b|)Wr, an even number,

and so acts as the identity. If they do not, however, the total cyclic walk

length is (2 + n)Wr + n(|b| − 1)Wr. (2 + n + |b|n− 1)Wr, for some n ≥ 0.

2+n+ |b|n−1 = 1+(1+ |b|)n, an odd number. Because Wr is an odd-length

subwalk, this walk has an odd length and so is not the identity.

As this proves all cases, the proof is complete.

Lemma 3.2. No burst from one external node acts as the identity for soliton

automata on a graph composed of a cycle with incoming paths of odd-length
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separation.

Proof. The cases for even separation of paths and for exactly one path are

proved above. In the odd-separation case, the first soliton no longer deter-

ministically traverses the cycle, but instead non-deterministically may exit

at an incoming branch.

1 a b

c d

e

fg

h

i

Figure 9: Odd-length separated cycle.

Assume the burst s1||k1s2||k2 ...sm−1||km−1sm⊥. Upon reaching the odd-

length separated path, assume s1 does not exit. Then it, and s2, determin-

istically proceed around the cycle, encountering the next switch. s2 has a

non-deterministic choice to exit or not, and we assume it and all its succes-

sors exit on the first available non-deterministic branch. We arrive at the

same conclusion as Theorem 3.4. The first soliton has the ability to perform

an odd number of cycle traversals, and if it does so, the burst is not the

identity.

In an odd-length burst, we may simply allow the first soliton and all

successors to exit on the first non-initial incoming path. Then the initial

incoming path is traversed an odd number of times, and the burst does not

act as the identity.

Then no burst acts as the identity for cycles with paths of odd-length

separation.

Theorem 3.5. No burst from one external node acts as the identity for

soliton automata on a graph composed of a cycle.

18



Proof. This directly follows from the methodology of Theorem 3.3 being

applied to odd-length cycles. Assume all solitons except the initial soliton

immediately exit on the first available path that is not the entry path. Then

the remainder of the cycle is traversed an odd number of times, and the burst

is not the identity. In tandem with Theorem 3.3 and Lemma 3.2, all cases

are covered and the proof is complete.
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4 Involution

A transformation that acts as the identity is defined as f(x) = x. Similarly, a
transformation that is its own inverse is called an involution, i.e. an involution
is defined as f(f(x)) = x. For a burst to be involuting, it must be applied
to an automaton twice in succession, after the first of the two bursts have
exited. If the parity of the number of times each edge is traversed by the first
burst agrees with the parity of the number of times each edge is traversed by
the second burst, it is considered an involuting burst.

Theorem 4.1. Any burst is involuting on a soliton automata on a graph

G = (N,E,w) with d(n) ≤ 2 for any n ∈ N .

Proof. From Theorem 3.1, an even burst length results in the identity trans-

formation I, and an odd burst length results in the complement of the iden-

tity transformation C, where I(w) = w and C(w) = 3 − w. By definition,

I×I = I and C×C = I, and in both cases, the result of two bursts acts as the

identity transformation. Then any burst is involuting on these graphs.

Theorem 4.2. Every soliton graph G = (N,E,w) that has no cycles (i.e.

a weighted tree) and that has a path through exclusively non-determinstic

branches has an involuting burst.

Proof. We proceed by cases for each node in G.

Case 1 : d(n) = 1

n is an exterior node. Every soliton will traverse its edge at least once,

and so the number of traversals in an involution is 2m for a burst length

m > 0.

Case 2 : d(n) = 2

n is connected in a line, and solitons cannot move backwards. Each edge

in the path is visited, and there will be 2m traversals for some integer m > 0

after two bursts.
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Case 3 : d(n) = 3

Consider now a component with degree 3.

1 a

2

3

Figure 10: Case 3.

Because the soliton automaton is a tree, we are assured each soliton that

enters the structure will only enter it once before exiting. The structure will

by definition have one weight-2 edge and two weight-1 edges; the specific

arrangement does not influence the outcome.

If a soliton enters the structure on the weight-2 edge, it will non-deterministically

pick one of the weight-1 edges to exit on. When the burst is repeated, the

soliton then deterministically follows the first, involuting the structure.

As this covers all cases, the structure is involutible.

The condition of non-deterministic branching is required for the above
proof as any other configuration would not be deterministic. Consider where
there is a node n ∈ N of d(n) = 3, where a soliton enters via an edge e ∈ E
with w(e) = 1. The soliton deterministically exits via the weight-2 edge. The
same soliton entering the component now has a non-deterministic choice, and
may not follow the first one, which causes the burst to not necessarily be
involutible. In addition, if a longer burst occurs on the component, solitons
incoming after the first soliton will also have a non-deterministic choice and
the soliton may not involute.

Consider a cycle in a soliton graph with one incoming path. For an
automaton of this form to be valid, a soliton must proceed down the incoming
path, around the cycle some number of times, and exit.

Lemma 4.1. All valid bursts are involuting on chestnuts with one exterior

node.

Proof. From Theorem 3.2, these bursts result in a definitively odd number of

cyclic walks, regardless of length and timing, and therefore are involuting.
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The necessity of distinct cyclic walk counts is required for proofs regarding
involution. Consider two identical bursts, where one has an odd amount of
cyclic walks, and the other has an even amount, due to the effects of non-
determinism. Then the resulting walks have an odd number of traversals
over the edges in the cycle, and so the bursts would not be involuting. In
any graph where a burst may or may not act as the identity, the burst is not
involuting, as walks may traverse the cycle an even number of times in the
first burst and an odd number of times in the second burst. In addition, if a
burst may or may not visit some edges, it is not involuting.

Lemma 4.2. No bursts from one exterior node are involuting on chestnuts

with multiple exterior nodes.

Proof. Assume a burst s1||k1s2||k2 ...sm−1||km−1sm⊥ of length m ≥ 2. s2 has

the option to potentially exit at any of the switches that are on the cycle but

not connected to the entry path. s1 will perform one cycle regardless of the

remainder of the burst.

Let ei be the number of solitons that traverse some branch i, where i ≥ 1,

and the initial incoming path count is e1. e1 ≥ m, as the burst comes from

one external node. We know that solitons will move in pairs, so eimod2 = 0.

Because they all move in pairs, the majority of solitons will not have any

effect on the graph. Thus, we examine only the beginning and end nodes.

In an odd burst, s1 traverses the cycle once and has weak determinism in

the cycle. Then it is not involuting, as it may cycle an even or odd number

of times before exiting. If the first burst cycles it an even number of times

and the second burst cycles it an odd number of times, the total number of

cyclic traversals is odd.

In an even-length burst, sm has weak determinism and is followed by s1.

If sm exits at a non-initial incoming path, the segment between it and the

initial incoming path is visited an odd number of times (recall Theorem 3.3),

and the other segment is visited an even number of times. If sm exits at the

incoming path, the entire cycle is visited an odd number of times. Because

the parity of the two segments do not match, it is not involuting.
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Then no burst from one exterior node is involuting on chestnuts with

multiple exterior nodes.

Lemma 4.3. No bursts are involuting on soliton automata on graphs com-

posed of a cycle with an odd length and an incoming path.

Proof. From Theorem 3.4, these bursts may or may not act as the identity.

Then the bursts are not involuting.

Theorem 4.3. No bursts from one exterior node are involuting soliton au-

tomata on graphs composed of a cycle, except chestnuts with one exterior

node.

Proof. Using Theorems 3.4 and 3.2, this is proved in an identical fashion to

4.3. In conjunction with 4.3, the proof is complete.
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5 Impervious Paths in Parallel

In the single-soliton case, an impervious path is a soliton path that is never
traversed, regardless of which exterior node it is input from. In the multi-
wave case, an impervious path is a soliton path that is never traversed,
regardless of burst properties. If an impervious path exists in a soliton au-
tomaton, its transition monoid is identical to that of the automaton on its
soliton graph, with the edges and nodes in the impervious path removed. If
a soliton graph has an impervious path, it is reducible. If it does not have an
impervious path, it is reduced.

Theorem 5.1. No soliton automaton has an impervious path in the multi-

wave model.

Proof. We prove by cases. Let d(n) be the degree of some node in a soliton

graph. We use the property that 1 ≤ d(n) ≤ 3 for soliton graphs.

Case 1 : d(n) = 1

n is an exterior node. It has one path to travel, and so this node does

not have any impervious edges.

1• ...

Figure 11: Case 1.

Case 2 : d(n) = 2

The node is connected in a line (i.e. is reducible). In any soliton au-

tomata, solitons cannot move backwards. So, in a subautomata consisting

of a line, each edge in the path is visited, and so no edge from this node is

impervious.

1 a• ...

Figure 12: Case 2.
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Case 3 : d(n) = 3

In this case, a soliton traverses a switch. There is one edge e ∈ E of weight

w(e) = 2 and two edges e ∈ E of weight w(e) = 1. Consider a burst s1||1s2⊥,

where the second soliton comes immediately after the first. At this switch,

if s1 has a non-deterministic choice, it will non-deterministically choose one

edge, meaning both edges may be visited and thus they are not impervious.

If it has a deterministic choice, s1 will traverse the deterministic edge, and

s2 now has a non-deterministic choice of which edge to visit. If it visits the

edge s1 did not visit, each edge has been visited, and there is no impervious

path.

1◦ a•

c

b ...

Figure 13: Case 3. s1 enters from 1, followed by s2.

Then, no node in a soliton graph has an impervious edge connected to it

in the multi-wave case, and so no multi-wave soliton graph is impervious.

Because there are no impervious paths in the multi-wave case, we arrive
at the following corollary:

Corollary 5.1. No multi-wave soliton graph is reducible.

It is important to note that this does not indicate that for each soliton
graph there is a burst that forces every edge to be traversed; only that there
are a series of bursts that will traverse every edge. The non-deterministic
behavior of solitons where d(n) = 3 for some n ∈ N only implies there is no
edge that cannot be traversed.
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6 Determinism

Non-determinism is present whenever a soliton encounters a switch with two
equal-weighted potential edges. If at least one of the two equal-weighted
potential edges eventually reaches the same state, i.e. if at least one of the
two potential paths is a cycle, the automaton is weakly deterministic. The
most obvious difference between weak determinism and strong determinism
is that weakly deterministic automata do not have an upper limit on path
length.

Lemma 6.1. If there is a cycle in a soliton graph, the associated soliton

automaton is not strongly deterministic.

Proof. Consider some burst, such that at least 2 solitons approach the cycle

(if a cycle exists, it will be traversed by at least some of the burst, from

Theorem 5.1). If a following soliton proceeds along the cycle in an opposite

direction to the leading soliton, the two will eventually meet causing conflict,

and so this path doesn’t exist. So, the only path to take is to follow the

first soliton. This causes all solitons to propagate around the cycle. If the

first soliton has the conditions to exit deterministically (i.e. a switch with

two different weights available to the soliton), it does so, causing the edge it

exits on to be identical to the edge in the cycle. A second soliton will then

encounter a non-deterministic switch. Otherwise, the first soliton encounters

a non-deterministic switch. Therefore, the soliton automaton is not strongly

deterministic.

For an example, refer to Appendix A.3. We can generalize this to all
switches in soliton automata:

Theorem 6.1. The presence of a switch implies that a soliton automaton is

non-deterministic in the multi-wave case.

Proof. Recall Theorem 5.1. Consider a non-deterministic switch (two edges

with the same weight and a third of a different weight), with a soliton burst
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of some length such that it is traversed. If there are no impervious paths

in a multi-wave automaton, each connected component of the soliton graph

could be visited, so the determinism of the graph depends on the deter-

minism of the components within it - such as this switch. If this switch

is non-deterministic, so is the automaton. When a soliton enters a non-

deterministic switch (necessary for some burst, as there are no impervious

paths), it either has a non-deterministic choice of which path to take, or takes

a deterministic path, “rotating” the switch into a non-deterministic configu-

ration for any soliton following it. Then the switch is non-deterministic, as

is the automaton.

Theorem 6.2. All multi-wave soliton automata are not strongly determin-

istic, except the trivial case of a graph with maximum degree 2.

Proof. All multi-wave soliton automata with a switch are non-deterministic

(Theorem 6.1). The only soliton automata without switches are paths of

degree ≤ 2. Each soliton linearly propagates from one exterior node to

another, and so these automata are strongly deterministic.
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7 Conclusion

In this thesis, we examined various results from the definition of the multi-
wave soliton model. We have proved that there are no reducible soliton
automata in the multi-wave case, as there are no impervious paths. We
have also proved that no non-trivial multi-wave soliton automaton (i.e. with
maximum degree greater than 2) is strongly deterministic. The results in
this paper generate even more questions: what possible alterations of the
model can be made to allow for parallel computation, despite the lack of
strong determinism in most soliton automata? Can the model be modified
to encourage an upper time bound on weak determinism? Does the choice
between initial exterior nodes in the multi-wave case matter, or if bursts
originate from a combination of various exterior nodes? These questions
should be addressed in a future, more in-depth work.
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Appendices

A Examples

A.1 Example 1

Two solitons, s1 and s2, are to propagate through a chestnut. First, we
consider if there is an odd distance between the solitons in the burst:

1 a◦ b•

c d

e

fg

Figure 14: The simple chestnut, with l = 2 and c = 6. Both solitons have

entered from 1, with t1 = 0 and t2 = 1. It is currently t = 2. We denote s1

as • and s2 as ◦.

1 a b◦

c d

e

fg•

Figure 15: Above, after one time step. s1 will be followed by s2.

1 a b•

c◦ d

e

fg

Figure 16: s1 arrives at the entry point. It cannot exit, as it must traverse a

weight 2 edge.
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1 a b◦

c d

e

fg•

Figure 17: s2 at a non-deterministic choice.

1 a b

c d

e

fg

Figure 18: The solitons exit. The final soliton graph is produced.

We then consider the case where two solitons have an even-length spacing
between them:

1 a b

c d•◦

e

fg

Figure 19: s1 and s2 coincide. They cannot move.

A.2 Example 2

Consider a burst of length 3. We take l = 2 to be the length of the incom-
ing path, and c = 6 to be the length of the cycle. We will use the burst
s1||1s2||1s3⊥.
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1 a b�

c d

e

f•g◦

Figure 20: The chestnut, with three solitons s1, s2, and s3, denoted by •, ◦,
and �.

When they enter the cycle, we proceed as above in the case of two solitons.
Due to the odd number of solitons, however, s1 will be able to exit on its
first pass.

1 a b•

c◦ d�

e

fg

Figure 21: s1 prepares to exit.

1 a• b◦

c� d

e

fg

Figure 22: s1 exits.

We can now see s2 has a non-deterministic choice, similarly to the 2-
soliton case. If s2 exits, s3 will follow it and exit. This results in the cycle
being traversed three times (an odd number), and so the identity has not
been applied to the cycle. The incoming path has an even traversal (6 times).
However, if s2 does not exit, the automaton becomes extremely similar to
the 2-soliton case.
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1 a b�

c d

e

fg◦

Figure 23: s2 does not exit.

The cycle is traversed once by each of s2 and s3. We return to Figure 22,
and make another non-deterministic choice. Regardless, we have cycled an
odd number of times when the burst finally completes, and so the burst is
not the identity.

A.3 Example 3

Consider the following soliton graph, with the burst s1||1s2⊥:

1 a b

c d

e

fg

Figure 24: A simple soliton graph with a cycle.

1 a b◦

c d

e

fg•

Figure 25: The soliton graph after 2 time steps.
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1 a b•

c◦ d

e

fg

Figure 26: The soliton graph after 5 more time steps.

1 a• b◦

c d

e

fg

Figure 27: The following soliton graph.

At this point, s2 has a non-deterministic choice, and the graph is not
strongly deterministic. Exiting will leave the cycle’s edges as-is, and per-
forming another cycle will invert the edge weights in the cycle. Consider the
same graph with the burst s1||1s2||1s3⊥:

1 a b

c d

e

fg

Figure 28: The simple soliton graph.

1 a b�

c d

e

f•g◦

Figure 29: The burst, propagated along the graph.
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1 a• b◦

c� d

e

fg

Figure 30: A following soliton graph.

Once again, s2 has a non-deterministic choice and so the graph is not
deterministic. If s2 exits, s3 must follow, and the final soliton graph is:

1 a b

c d

e

fg

Figure 31: One final soliton graph.

Otherwise, the two remaining solitons propagate once and we find the
following graph:

1 a b◦

c� d

e

fg

Figure 32: Weakly deterministic soliton graph.

This graph is identical to the prior graph, and so this burst is weakly
deterministic (as it can repeat infinitely).

A.4 Example 4

We will demonstrate the behavior of weak determinism here.
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1 a◦ b•

c d

e

fg

Figure 33: Chestnut, l = 2 and c = 6. Both solitons have entered from 1,

with t1 = 0 and t2 = 1. It is currently t = 2. We denote s1 as • and s2 as ◦.

1 a b◦

c d

e

fg•

Figure 34: s1 moves to g. s2 moves to b.

1 a b•

c◦ d

e

fg

Figure 35: s1 and s2 have traversed the cycle. s1 now proceeds to node g

again.

1 a b◦

c d

e

fg•

Figure 36: s2 now has a non-deterministic choice of remaining in the cycle

or not.

If s2 remains in the cycle, we find that the graph and possible soliton
transitions are identical to that of Figure 34. Figure 36 is reached again.
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This can continue infinitely. However, if s2 does not remain in the cycle, it
will always exit on the incoming path. This is weak determinism as when
(if) s2 exits the cycle, it has the same behavior as if it had left the cycle at
an earlier or later time.
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